Policy Search with High-Dimensional Context Variables
نویسندگان
چکیده
Direct contextual policy search methods learn to improve policy parameters and simultaneously generalize these parameters to different context or task variables. However, learning from high-dimensional context variables, such as camera images, is still a prominent problem in many real-world tasks. A naive application of unsupervised dimensionality reduction methods to the context variables, such as principal component analysis, is insufficient as task-relevant input may be ignored. In this paper, we propose a contextual policy search method in the model-based relative entropy stochastic search framework with integrated dimensionality reduction. We learn a model of the reward that is locally quadratic in both the policy parameters and the context variables. Furthermore, we perform supervised linear dimensionality reduction on the context variables by nuclear norm regularization. The experimental results show that the proposed method outperforms naive dimensionality reduction via principal component analysis and a state-ofthe-art contextual policy search method.
منابع مشابه
A Monte Carlo-Based Search Strategy for Dimensionality Reduction in Performance Tuning Parameters
Redundant and irrelevant features in high dimensional data increase the complexity in underlying mathematical models. It is necessary to conduct pre-processing steps that search for the most relevant features in order to reduce the dimensionality of the data. This study made use of a meta-heuristic search approach which uses lightweight random simulations to balance between the exploitation of ...
متن کاملSparse Latent Space Policy Search
Computational agents often need to learn policies that involve many control variables, e.g., a robot needs to control several joints simultaneously. Learning a policy with a high number of parameters, however, usually requires a large number of training samples. We introduce a reinforcement learning method for sampleefficient policy search that exploits correlations between control variables. S...
متن کاملیک روش مبتنی بر خوشهبندی سلسلهمراتبی تقسیمکننده جهت شاخصگذاری اطلاعات تصویری
It is conventional to use multi-dimensional indexing structures to accelerate search operations in content-based image retrieval systems. Many efforts have been done in order to develop multi-dimensional indexing structures so far. In most practical applications of image retrieval, high-dimensional feature vectors are required, but current multi-dimensional indexing structures lose their effici...
متن کاملLearning Complex Neural Network Policies with Trajectory Optimization
Direct policy search methods offer the promise of automatically learning controllers for complex, high-dimensional tasks. However, prior applications of policy search often required specialized, low-dimensional policy classes, limiting their generality. In this work, we introduce a policy search algorithm that can directly learn high-dimensional, general-purpose policies, represented by neural ...
متن کاملA New Mathematical Model for a Multi-product Supply Chain Network with a Preventive Maintenance Policy
The supply chain network design (SCND) implicates decision-making at a strategic level and makes it possible to create an effective and helpful context for managing. The aim of the network is to minimize the total cost so that customer's demands should be met. Preventive maintenance is pre-determined work performed to a schedule with the aim of preventing the wear and tear or sudden failure of ...
متن کامل